

Food and Agriculture Organization of the United Nations

FAO SPECIFICATIONS AND

EVALUATIONS FOR AGRICULTURAL

PESTICIDES

AZOXYSTROBIN

methyl (*E*)-2-{2-[6-(2-cyanophenoxy)pyrimidin -4-yloxy]phenyl}-3-methoxyacrylate

TABLE OF CONTENTS AZOXYSTROBIN

		Page
INTR	ODUCTION	1
PAR	ΓΟΝΕ	
SPEC	CIFICATIONS FOR AZOXYSTROBIN	2
AZO>	XYSTROBIN INFORMATION	3
AZO>	XYSTROBIN TECHNICAL MATERIAL (NOVEMBER 2019)	5
	XYSTROBIN WATER DISPERSIBLE GRANULES (EMBER 2019)	6
`		0
	(EMBER 2019)	9
	ΓΤWO	
FAR		
EVAL	UATIONS OF AZOXYSTROBIN	12
2019	FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	14
	SUPPORTING INFORMATION	16
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	18
	ANNEX 2: REFERENCES	20
2018	FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	21
2010	SUPPORTING INFORMATION	23
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	25
	ANNEX 2: REFERENCES	27
2016.	.2 FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	28
	SUPPORTING INFORMATION	30
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	32
	ANNEX 2: REFERENCES	34

2016.	1 FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	35
	SUPPORTING INFORMATION	37
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	40
	ANNEX 2: REFERENCES	42
2013	FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	43
	SUPPORTING INFORMATION	45
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	47
	ANNEX 2: REFERENCES	49
2009	FAO/WHO EVALUATION REPORTS ON AZOXYSTROBIN	50
	SUPPORTING INFORMATION	52
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	55
	ANNEX 2: REFERENCES	58
2007	FAO/WHO EVALUATION REPORT ON AZOXYSTROBIN	60
	SUPPORTING INFORMATION	62
	ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOSER	66
	ANNEX 2: REFERENCES	71

FAO specifications are developed with the basic objective of promoting, as far as practicable, the manufacture, distribution and use of pesticides that meet basic quality requirements.

Compliance with the specifications does not constitute an endorsement or warranty of the fitness of a particular pesticide for a particular purpose, including its suitability for the control of any given pest, or its suitability for use in a particular area. Owing to the complexity of the problems involved, the suitability of pesticides for a particular purpose and the content of the labelling instructions must be decided at the national or provincial level.

Furthermore, pesticides which are manufactured to comply with these specifications are not exempted from any safety regulation or other legal or administrative provision applicable to their manufacture, sale, transportation, storage, handling, preparation and/or use.

FAO disclaims any and all liability for any injury, death, loss, damage or other prejudice of any kind that may arise as a result of, or in connection with, the manufacture, sale, transportation, storage, handling, preparation and/or use of pesticides which are found, or are claimed, to have been manufactured to comply with these specifications.

Additionally, FAO wishes to alert users to the fact that improper storage, handling, preparation and/or use of pesticides can result in either a lowering or complete loss of safety and/or efficacy.

FAO is not responsible, and does not accept any liability, for the testing of pesticides for compliance with the specifications, nor for any methods recommended and/or used for testing compliance. As a result, FAO does not in any way warrant or represent that any pesticide claimed to comply with a FAO specification actually does so.

¹ This disclaimer applies to all specifications published by FAO.

INTRODUCTION

FAO establishes and publishes specifications* for technical material and related formulations of agricultural pesticides, with the objective that these specifications may be used to provide an international point of reference against which products can be judged either for regulatory purposes or in commercial dealings.

From 1999 onward, the development of FAO specifications follows the **New Procedure**, described first in the 5th edition of the "Manual on the development and use of FAO specifications for plant protection products" and later in the 1st edition of "Manual for Development and Use of FAO and WHO Specifications for Pesticides" (2002) - currently available as 3rd revision of the 1st edition (2016) - , which is available only on the internet through the FAO and WHO web sites.

This **New Procedure** follows a formal and transparent evaluation process. It describes the minimum data package, the procedure and evaluation applied by FAO and the Experts of the FAO/WHO Joint Meeting on Pesticide Specifications (JMPS). [Note: prior to 2002, the Experts were of the FAO Panel of Experts on Pesticide Specifications, Registration Requirements, Application Standards and Prior Informed Consent, which now forms part of the JMPM, rather than the JMPS.]

FAO Specifications now only apply to products for which the technical materials have been evaluated. Consequently from the year 1999 onwards the publication of FAO specifications under the **New Procedure** has changed. Every specification consists now of two parts namely the specifications and the evaluation report(s):

- **Part One: The Specification** of the technical material and the related formulations of the pesticide in accordance with chapters 4 to 9 of the "Manual on development and use of FAO and WHO specifications for pesticides".
- **Part Two**: The Evaluation Report(s) of the pesticide, reflecting the evaluation of the data package carried out by FAO and the JMPS. The data are provided by the manufacturer(s) according to the requirements of chapter 3 of the "FAO/WHO Manual on Pesticide Specifications" and supported by other information sources. The Evaluation Report includes the name(s) of the manufacturer(s) whose technical material has been evaluated. Evaluation reports on specifications developed subsequently to the original set of specifications are added in a chronological order to this report.

FAO specifications developed under the **New Procedure** do not necessarily apply to nominally similar products of other manufacturer(s), nor to those where the active ingredient is produced by other routes of manufacture. FAO has the possibility to extend the scope of the specifications to similar products but only when the JMPS has been satisfied that the additional products are equivalent to that which formed the basis of the reference specification.

Specifications bear the date (month and year) of publication of the current version. Evaluations bear the date (year) of the Meeting at which the recommendations were made by the JMPS.

* NOTE: PUBLICATIONS ARE AVAILABLE ON THE INTERNET AT (<u>http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmps/ps-new/en/)</u>OR IN HARDCOPY FROM THE PLANT PROTECTION INFORMATION OFFICER.

PART ONE SPECIFICATIONS

AZOXYSTROBIN

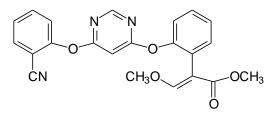
	Page
AZOXYSTROBIN INFORMATION	3
AZOXYSTROBIN TECHNICAL MATERIAL (NOVEMBER 2019)	5
AZOXYSTROBIN WATER DISPERSIBLE GRANULES (NOVEMBER 2019)	6
AZOXYSTROBIN SUSPENSION CONCENTRATE (NOVEMBER 2019)	9

AZOXYSTROBIN

INFORMATION

ISO common name:

Azoxystrobin (E-ISO, BSI)


Chemical name(s):

- IUPAC, methyl (*E*)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate
- CA, methyl (*E*)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene) benzeneacetate (9CI)

Synonyms:

none

Structural formula:

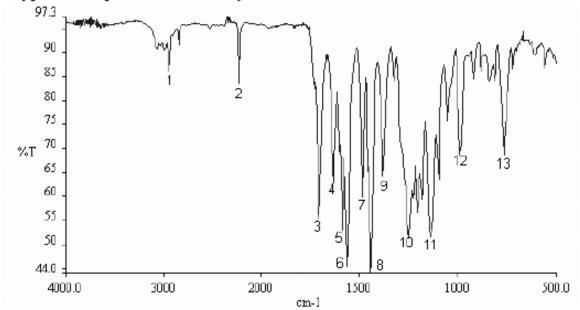
Molecular formula:

 $C_{22}H_{17}N_3O_5$

Relative molecular mass:

403.4

CAS Registry number:


131860-33-8

CIPAC number:

571

Identity tests:

GC retention time; IR spectrum

Typical IR spectrum of Azoxystrobin

Peak	Wavelength cm ⁻¹	Peak	Wavelength cm ⁻¹
1	2949	7	1487
2	2233	8	1436
3	1710	9	1382
4	1635	10	1252
5	1591	11	1144
6	1564	12	991
		13	556

AZOXYSTROBIN TECHNICAL MATERIAL

FAO Specification 571 / TC (November 2019*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturers whose names are listed in the evaluation reports (571/2007, 571/2009, 571/2013, 571/2016.1, 571/2016.2, 571/2018 & 571/2019). It should be applicable to technical materials produced by these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for TC produced by other manufacturers. The evaluation reports (571/2007, 571/2009, 571/2013, 571/2016.1, 571/2016.2, 571/2018 & 571/2019), as PART TWO, form an integral part of this publication.

1 **Description**

The material shall consist of azoxystrobin together with related manufacturing impurities, in the form of an off-white to light brown or yellowish powder and shall be free from visible extraneous matter and added modifying agents.

2 Active ingredient

2.1 Identity tests (CIPAC 571/TC/M/2, Handbook M, p. 11, 2009)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Azoxystrobin content (CIPAC 571/TC/M/3, Handbook M, p. 11, 2009)

The azoxystrobin content shall be declared (not less than 965 g/kg) and, when determined, the average measured content shall not be lower than the declared minimum content.

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: <u>http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/ps-new/en/</u>

AZOXYSTROBIN WATER DISPERSIBLE GRANULES

FAO Specification 571 / WG (November 2019*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturers whose names are listed in the evaluation reports (571/2007 and 571/2009). It should be applicable to relevant products of these manufacturers, and those of any other formulators who use only TC from the evaluated sources. The specification is not an endorsement of those products, nor a guarantee that they comply with the specification. The specification may not be appropriate for the products of other manufacturers who use TC from other sources. The evaluation reports (571/2007 and 571/2009), as PART TWO, form an integral part of this publication.

1 **Description**

The material shall consist of an homogeneous mixture of technical azoxystrobin, complying with the requirements of FAO specification 571/TC (November 2019), together with carriers and any other necessary formulants. It shall be in the form of cylindrical granules (approximate diameter 0.6–1 mm and length 2–8 mm), for application after disintegration and dispersion in water. The formulation shall be dry, free-flowing, essentially non-dusty, and free from visible extraneous matter and hard lumps.

2 Active ingredient

2.1 Identity tests (CIPAC 571/WG/M/2, Handbook M, p. 14, 2009)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Azoxystrobin content (CIPAC 571/WG/M/3, Handbook M, p. 14, 2009).

The azoxystrobin content shall be declared (g/kg) and, when determined, the average content measured shall not differ from that declared by more than the following amount:

Declared content	Permitted tolerance
Above 250 up to 500 g/kg	± 5% of the declared content

3 Physical properties

3.1 Wettability (MT 53.3, CIPAC Handbook F, p.165, 1995)

The formulation shall be completely wetted in 30 seconds, with swirling.

- 3.2 Wet sieve test (MT 185, CIPAC Handbook K, p.149, 2003) (Note 1)Maximum: 0.5% retained on a 75 µm test sieve.
- 3.3 Degree of dispersion (MT 174, CIPAC Handbook F, p.435, 1995)

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: <u>http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/ps-new/en/</u>

Dispersibility: minimum 70% after 1 minute of stirring.

3.4 **Suspensibility** (MT 168, CIPAC Handbook F, p.417, 1995 or MT 184.1) (Notes 2, 3 & 4)

A minimum of 60% shall be in suspension after 30 minutes in CIPAC Standard Water D at $30 \pm 2^{\circ}$ C.

3.5 **Persistent foam** (MT 47.3, CIPAC Handbook O, p. 177, 2017) (Note 5)

Maximum: 60 ml after 1 minute.

3.6 Dustiness (MT 171.1) (Notes 6 & 7)

Essentially non-dusty.

3.7 **Flowability** (MT 172, CIPAC Handbook F, p.430, 1995)

At least 99% of the formulation shall pass through a 5 mm test sieve after 20 drops of the sieve.

3.8 Attrition resistance (MT 178.2, CIPAC Handbook K, p.140, 2003)

Minimum: 90% attrition resistance.

4 Storage stability

4.1 Stability at elevated temperature (MT 46.3, CIPAC Handbook J, p. 128, 2000)

After storage at $54 \pm 2^{\circ}$ C for 14 days, the determined average active ingredient content must not be lower that 95% relative to the determined average content found before storage (Note 8) and the formulation shall continue to comply with the clauses for:

- wet sieve test (3.1)
- degree of dispersion (3.3)
- suspensibility (3.4)
- dustiness (3.6)
- attrition resistance (3.8)
- <u>Note 1</u> This test detects coarse particles (e.g. caused by crystal growth) or agglomerates (crust formation) or extraneous materials which could cause blockage of spray nozzles or filters in the spray tank.
- <u>Note 2</u> The formulation should be tested at the highest and lowest rates of use recommended by the supplier, provided this does not exceed the conditions given in methods MT 168 and MT 184.1.
- <u>Note 3</u> MT 184.1 is the revised version of MT 184 and was adopted at the 2018 CIPAC Meeting in Panama. Prior to its publiction in an next Handbook, copies of the method can be obtained through <u>https://www.cipac.org/index.php/methods-publications/pre-published-methods</u>
- Note 4 Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, the simpler gravimetric method, MT 168, may be used on a routine basis provided that it has been shown to give equal results to those of chemical assay. In case of dispute, chemical assay shall be the "referee method".
- <u>Note 5</u> The mass of sample to be used in the test should be specified at the highest rate recommended by the supplier. The test is to be conducted in CIPAC standard water D.
- <u>Note 6</u> Measurement of dustiness must be carried out on the sample "as received" and, where practicable, the sample should be taken from a newly opened container, because changes in the water content of samples may influence dustiness significantly. The optical method, MT 171.2, usually shows good correlation with the gravimetric method, MT 171.1, and can, therefore, be used as an alternative

where the equipment is available. Where the correlation is in doubt, it must be checked with the formulation to be tested. In case of dispute the gravimetric method shall be used.

- Note 7 MT 171.1 is a revised version of MT 171. This new method was accepted as a provisional CIPAC method in 2015. Prior to publication of the method in a Handbook, copies of the method may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm.
- <u>Note 8</u> Analysis of the formulation, before and after the storage stability test, may be carried out concurrently (i.e. after storage) to reduce analytical error.

AZOXYSTROBIN SUSPENSION CONCENTRATE

FAO Specification 571 / SC (November 2019*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturers whose names are listed in the evaluation reports (571/2007 and 571/2009). It should be applicable to relevant products of these manufacturers, and those of any other formulators who use only TC from the evaluated sources. The specification is not an endorsement of those products, nor a guarantee that they comply with the specification. The specification may not be appropriate for the products of other manufacturers who use TC from other sources. The evaluation reports 571/2007 and 571/2009, as PART TWO, form an integral part of this publication.

1 **Description**

The material shall consist of a suspension of fine particles of technical azoxystrobin complying with the requirements of FAO specification 571/TC (November 2019), in an aqueous phase together with suitable formulants. After gentle agitation the material shall be homogeneous (Note 1) and suitable for further dilution in water.

2 Active ingredient

2.1 Identity tests (CIPAC 571/SC/M/2, CIPAC Handbook M, p. 15, 2009)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Azoxystrobin content (CIPAC 571/SC/M/3, CIPAC Handbook M, p. 15, 2009)

The azoxystrobin content shall be declared (g/kg or g/l at $20 \pm 2^{\circ}$ C, Note 2) and, when determined, the average content measured shall not differ from that declared by more than the following amounts:

Declared content, g/kg or g/l at 20°C	Permitted tolerance
Above 100 up to 250	± 6% of the declared content

3 **Physical properties**

3.1 **pH range** (MT 75.3, CIPAC Handbook J, p.131, 2000)

pH range: 6 to 8.

3.2 **Pourability** (MT 148.1, CIPAC Handbook F, p.348, 1995)

Maximum residue: 8%.

3.3 Spontaneity of dispersion (MT 160, CIPAC Handbook F, p.391, 1995) (Note 3)

A minimum of 80% of the azoxystrobin content found under 2.2 shall be in suspension after 5 minutes in CIPAC Standard Water D at $30 \pm 2^{\circ}$ C.

3.4 **Suspensibility** (MT 184.1) (Notes 3 & 4)

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: <u>http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/ps-new/en/</u>

A minimum of 90% of the azoxystrobin content found under 2.2 shall be in suspension after 30 minutes in CIPAC Standard Water D at $30 \pm 2^{\circ}$ C.

3.5 Wet sieve test (MT 185, CIPAC Handbook K, p.148, 2003) (Note 5)

Maximum: 0.1% of the formulation shall be retained on a 75 μ m test sieve.

3.6 Persistent foam (MT 47.3, CIPAC Handbook O, p. 177, 2017) (Note 6)

Maximum: 20 ml after 1 minute.

4 Storage stability

4.1 Stability at 0°C (MT 39.3, CIPAC Handbook J, p.126, 2000)

After storage at $0 \pm 2^{\circ}$ C for 7 days, the formulation shall continue to comply with clauses for:

- suspensibility (3.4),
- wet sieve test (3.5).
- 4.2 Stability at elevated temperature (MT 46.3, CIPAC Handbook J, p.128, 2000)

After storage at $54 \pm 2^{\circ}$ C for 14 days, the determined average active ingredient content must not be lower than 95% relative to the determined average content found before storage (Note 7) and the formulation shall continue to comply with the clauses for:

- pH range (3.1),
- pourability (3.2),
- spontaneity of dispersion (3.3),
- suspensibility (3.4),
- wet sieve test (3.5).
- Note 1 Before sampling to verify the formulation quality, inspect the commercial container carefully. On standing, suspension concentrates usually develop a concentration gradient from the top to the bottom of the container. This may even result in the appearance of a clear liquid on the top and/or of sediment on the bottom. Therefore, before sampling, homogenize the formulation according to the instructions given by the manufacturer or, in the absence of such instructions, by gentle shaking of the commercial container (for example by inverting the closed container several times). Large containers must be opened and stirred adequately. After this procedure, the container should not contain a sticky layer of non-dispersed matter at the bottom. A suitable and simple method of checking for a non-dispersed sticky layer "cake" is by probing with a glass rod or similar device adapted to the size and shape of the container. All the physical and chemical tests must be carried out on a laboratory sample taken after the recommended homogenization procedure.
- <u>Note 2</u> Unless homogenization is carried out carefully, it is possible for the sample to become aerated. This can lead to errors in the determination of the mass per millilitre and in calculation of the active ingredient content (in g/l) if methods other than MT 3.3 are used. If the buyer requires both g/kg and g/l at 20°C, then in case of dispute the analytical results shall be calculated as g/kg.
- <u>Note 3</u> Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric and solvent extraction determination may be used on a routine basis provided that these methods have been shown to give equal results to those of the chemical assay method. In case of dispute, the chemical method shall be the referee method.
- <u>Note 4</u> MT 184.1 is the revised version of MT 184 and was adopted at the 2018 CIPAC Meeting in Panama. Prior to its publiction in an next Handbook, copies of the method can be obtained through <u>https://www.cipac.org/index.php/methods-publications/pre-published-methods</u>

- <u>Note 5</u> This test detects coarse particles (e.g. caused by crystal growth) or agglomerates (crust formation) or extraneous materials which could cause blockage of spray nozzles or filters in the spray tank.
- <u>Note 6</u> The mass of sample to be used in the test should correspond to the highest rate of use recommended by the supplier. The test is to be conducted in CIPAC standard water D.
- <u>Note 7</u> Samples of the formulation taken before and after the storage stability test may be analyzed concurrently after the test in order to reduce the analytical error.

EVALUATION REPORTS

AZOXYSTROBIN

2019 FAO/WHO evaluation report based on submission of information from	om
CAC Nantong Chemical Co., Ltd. (TC)	14
Supporting information	16
Annex 1: Hazard summary provided by the proposer	18
Annex 2: References	20
2018 FAO/WHO evaluation report based on submission of information from	om
Hebei Veyong Bio-Chemical Co., Ltd. (TC)	21
Supporting information	23
Annex 1: Hazard summary provided by the proposer	25
Annex 2: References	27
2016.2 FAO/WHO evaluation report based on submission of information	n from
Jiangsu Sevencontinent Green Chemical Co., Ltd. (TC)	28
Supporting information	30
Annex 1: Hazard summary provided by the proposer	32
Annex 2: References	34
2016.1 FAO/WHO evaluation report based on submission of information	n from
Nutrichem Co. Ltd. (TC)	35
Supporting information	37
Annex 1: Hazard summary provided by the proposer	40
Annex 2: References	42
2013 FAO/WHO evaluation report based on submission of information from	om
Helm AG (TC)	43
Supporting information	45
Annex 1: Hazard summary provided by the proposer	47
Annex 2: References	49

71

2009	FAO/WHO evaluation report based on submission of information from Makhteshim (TC, WG, SC)	50
	Supporting information Annex 1: Hazard summary provided by the proposer Annex 2: References	52 55 58
2007	FAO/WHO evaluation report based on submission of information from Syngenta (TC, WG, SC) Supporting information Annex 1: Hazard summary provided by the proposer	60 62 66

Annex 2: References

AZOXYSTROBIN FAO/WHO EVALUATION REPORT 571/2018

Recommendations

The Meeting recommended that:

- (i) the azoxystrobin TC proposed by CAC Nantong Chemical Co., Ltd. be accepted as equivalent to the azoxystrobin reference profile.
- (ii) the existing FAO specification for azoxystrobin TC should be extended to encompass the technical material produced by CAC Nantong Chemical Co., Ltd.

Appraisal

Data provided by CAC Nantong Chemical Co., Ltd. (CAC Nantong) for azoxystrobin TC were evaluated in support of the determination of equivalence with the existing FAO specification for azoxystrobin. Azoxystrobin was evaluated by the FAO/WHO JMPR and WHO/IPCS in 2008. [JMPR 2008a, JMPR 2008b]

The data for azoxystrobin had been evaluated in support of new FAO specifications based on the draft specifications and the supporting data provided by Syngenta Crop Protection AG in 2007. Later on, the TC specification was extended several times: in 2018, 2016, 2013 and 2009. for extension of specifications for Makhteshim Chemical Works (now ADAMA) in 2009, i

Data on azoxystrobin TC were provided by CAC Nantong Chemical in 2017 in support of an equivalence determination with the reference profile that supports the existing azoxystrobin FAO specification 571/TC (May 2018).

The data submitted were broadly in accordance with the requirements of the FAO/WHO Manual (3rd revision of the 1st edition) and complied with the existing specification. The confidential data provided on the manufacturing process of azoxystrobin are identical to those submitted for registration in the UK. [Tessier, 2019]

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data, including impurities occurring at 1 g/kg and above. Mass balances were 98.83 – 99.38% in the 5-batch data. The declared minimum active ingredient content (975 g/kg) was slightly higher than that of the FAO specification (965 g/kg). CAC Nantong confirmed that their product complies with the existing specification.

The manufacturing limits for impurities occurring both in the reference profile and in the material under consideration did not exceed the limits in the reference profile. The maximum limits for the impurities were supported by the batch data. No new impurities were identified..

The CAC Nantong Chemical manufacturing process is comprised of 3 steps, while the process utilized by Syngenta is a one step one, where the 3rd step of CAC Nantong Chemical's process is similar to the step used by Syngenta. Five batch data were submitted

to bridge the in-house method of analysis and the CIPAC methods of analysis for active substance content and data for *Z*-isomer content of the 5-batches. The analytical method for the determination of the active ingredient in azoxystrobin technical was HPLC with UV detection. The organic impurities were determined by HPLC and GC. Test methods for determination of physico-chemical properties of the technical active ingredient were CIPAC, OECD and EC where appropriate. [CIPAC, F]

Data on physical-chemical properties, like melting point and solubility in organic solvents, for technical material (98.57%) were provided. Toxicity data were available for mutagenicity profile (Ames test, micronucleus test) derived from the technical grade active ingredient manufactured by the proposer with a purity of 98.5%. OECD test methods were used. Results were similar to those provided for the reference profile.

The Meeting therefore concluded that, based on the higher declared minimum purity and similarity of the impurity profiles of the reference and of Nantong Chemical's product and the absence of reverse mutations in the OECD 471 test and no evidence of mutagenic activity in rats in the OECD 474 test, Nantong Chemical's azoxystrobin TC could be considered as equivalent to the azoxystrobin reference TC by Tier-1.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 471/2019

Table 1: Chemical composition and properties of azoxystrobin technical n	naterials
(TC)	

				information supplie ass balances were		
Declared minimum azoxystrobin content			975 g/kg			
Relevant impurities ≥ 1 g/kg and maximum limits for them			None.			
Relevant impurities < 1 g/kg and maximum limits for them:			None.			
Stabilisers or other additives and maximum limits for them:			None.			
Parameter	Value and conditions		Purity %	Method reference	Study number	
Melting temperature range of the TC	113.7 to 115.3°C		98.57	OECD 102	RF.2278.005.064 .13 Unpublished	
Solubility in organic solvents	83.91 g/l in acetone at 20°C 16.09 g/l in methanol at 20°C		98.57	OECD 105	RF.2278.008.112 .13 Unpublished	

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

The present submission is for determination of equivalence of azoxystrobin technical grade only.

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient (including identity tests) is based on CIPAC 571/TC/M. The azoxystrobin is determined by GC with FID and internal standardisation.

The method(s) for determination of organic impurities are based on analysis by reverse phase liquid chromatography using UV detection and quantification by external standard. Test methods for determination of physico-chemical properties of the technical active ingredient were OECD.

CONTAINERS AND PACKAGING

Not applicable: The present application is for determination of equivalence of azoxystrobin technical grade only.

EXPRESSION OF THE ACTIVE INGREDIENT

The content of the active ingredient azoxystrobin is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

(i) The proposer confirmed that the toxicological data included in the summary below were derived from azoxystrobin having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Species	Test	Purity %	Guideline, duration, doses and conditions	Result [(isomer/form)]	Study number
Salmonella typhimurium TA97a, TA98, TA 1100, TA 102, TA1535	Bacterial reverse mutation test	98.5	Guideline: OECD 471 Doses:0.03- 5.0mg/plate with and without addition of S9	Azoxystrobin does not induce mutagenic activity in the strains of <i>Salmonella</i> <i>typhimurium</i>	RF.2278.401.055.15 Unpublished
Rats (<i>Rattus</i> <i>Norvegicus</i>) M&F	Mutagenic potential test by Micronucleus assay in rats	98.5	Guideline: OECD 474 Doses: 250, 1000, 1500, 2000mg/kg b.w. for preliminary test; 2000mg/kg for definitive test.	Azoxystrobin produces no evidence of mutagenic activity in rats.	RF.2278.402.044.15 Unpublished

Table 1.	Mutagenicity profile of the azoxystrobin technical material based on in vitro and in
	<i>vivo</i> tests

ANNEX 2

REFERENCES

Study number	Author(s)	year	Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study.
JMPR		2008	Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting
2008a			on Pesticide Residues. Evaluations, 2008. Part I, Residues. FAO Plant
			Production and Protection Paper. 194:1-202.
JMPR 2008b		2008	Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting
			on Pesticide Residues. Report, 2008. FAO Plant Production and Protection Paper. 193:55-95.
FAO, 2017		2017	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_ Pesticides/Specs/Azoxystrobin_2017_05_16.pdf
Tessier, 2019			E-mail from Sonia Tessier, sent on 12 February 2019 [From: <u>Sonia.Tessier@hse.gov.uk</u> to <u>laszlo.bura@efsa.europa.eu</u>]
CIPAC, M	Martijn A and	2009	CIPAC Handbook Volume M, p.11
	Dobrat W		
CIPAC, F	Martijn A and Dobrat W	1995	CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Formulated Pesticides
RF.2278.4 01.055.15		2015	Evaluation of the mutagenic potential of the test substance Azoxystrobin Technical by reverse mutation assay in <i>Salmonella</i> <i>enterica</i> serovar <i>typhimirium</i> (Ames Test) GLP, Unpublished.
RF.2278.4 02.044.15		2015	Evaluation of the mutagenic potential of the test item Azoxystrobin Technical by micronucleus assay in rats, Unpublished.

AZOXYSTROBIN FAO/WHO EVALUATION REPORT 571/2018

Recommendations

The Meeting recommended that:

- (i) the azoxystrobin TC proposed by Hebei Veyong Bio-Chemical Co., Ltd. be accepted as equivalent to the azoxystrobin reference profile
- (ii) the existing FAO specification for azoxystrobin TC should be extended to encompass the technical material produced by Hebei Veyong Bio-Chemical Co., Ltd.

Appraisal

The Meeting considered data provided by Hebei Veyong Bio-Chemical Co., Ltd. (Hebei Veyong) for azoxystrobin TC in 2016, in support of the determination of equivalence with the existing FAO specification for azoxystrobin. Azoxystrobin was evaluated by the FAO/WHO JMPR and WHO/IPCS in 2008. [JMPR 2008a, JMPR 2008b]

The FAO reference specifications for azoxystrobin TC and formulations were published in 2007, and later extended in 2009, 2015 and 2017. [FAO, 2017]

The data submitted by Hebei Veyong were broadly in accordance with the requirements of the [FAO/WHO Manual, 2016] and supported the existing specification. The confidential data provided on the manufacturing process of azoxystrobin are the same as to those submitted to ICAMA for registration in China. [Chen, 2018]

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data, which have been updated in December 2016. Mass balances were 99.0 - 99.1 % in the 5-batch data.

The declared minimum azoxystrobin content (975 g/kg) in the TC was slightly higher than that of the FAO specification. The Company confirmed that their product complies with the existing specification, however specified a minimum active substance content of 970 g/kg. Manufacturing limits for impurities occurring both in the reference profile and in the material under consideration did not exceed the corresponding limits in the reference profile. The maximum limits for the impurities were supported by the batch data. No new impurities were identified.

Hebei Veyong's manufacturing process includes more steps than that of the reference profile. In 2017, when the Meeting for the first time discussed the submission, some data requirements were raised to bridge the in-house method of analysis and the CIPAC methods of analysis for active substance content and data for *Z*-isomer content of the 5-batches. It was clarified however that the required data were already part of the original submission. The analytical method for the determination of the active ingredient in azoxystrobin technical was GC with FID detection with internal standardisation. The method is the full CIPAC Method 571/TC/M published in Handbook M [CIPAC, M] The organic impurities were determined by HPLC and GC. Test methods for determination of physical-chemical properties of the technical active ingredient were CIPAC, OECD and EC. [CIPAC, F] as appropriate.

Data on physical-chemical properties, like melting point and solubility in organic solvents, for technical material (98.2%) were provided. Toxicity data were available for the induction of reverse mutations by the azoxystrobing TC according of to OECD 471 guideline with a purity of 97.93%. The outcome of the study allow the conclusion that the TC does not induce reverse mutations in the *Salmonella typhimurium* strains as does the the reference TC.

The Meeting therefore concluded that, based on the higher declared minimum purity and similarity of the impurity profiles of the reference and of Hebei Veyong 's product and the absence of reverse mutations in the OECD 471 test, Hebei Veyong's azoxystrobin TC could be considered as equivalent to the azoxystrobin reference TC by Tier-1.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 471/2018

Table 1: Chemical composition and properties of azoxystrobin technical material (TC)

· · · · · · · · · · · · · · · · · · ·		1			
Manufacturing process, impurities ≥ 1 g/kg, 5 ba		Confidential information supplied and held on file by FAO. Mass balances were 98.86 - 99.61 %			
Declared minimum azox	ystrobin content	970 g/kg			
Relevant impurities ≥ 1 g limits for them	g/kg and maximum	None.			
Relevant impurities < 1 g limits for them:	g/kg and maximum	None.			
Stabilisers or other additives and maximum limits for them:		None.			
Parameter	Value and conditions		Purity %	Method reference	Study number
Melting temperature range of the TC and/or TK	114.2 °C - 115.4 °C		98.2	OECD 102	NC-2014-135
Solubility in organic	49.3 mg/l hexane at 2	20 °C	98.2	OECD 105	NC-2014-135
solvents	20.7 g/l methanol at 20 °C		98.2	OECD 105	NC-2014-135

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

The present submission is for determination of equivalence of azoxystrobin technical grade only.

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient (including identity tests) is based on CIPAC 571/TC/M. The azoxystrobin is determined by GC with FID and internal standardisation.

The method(s) for determination of organic impurities are based on analysis by reverse phase liquid chromatography using UV detection and quantification by external standard. Test methods for determination of physico-chemical properties of the technical active ingredient were OECD.

CONTAINERS AND PACKAGING

Not applicable: The present application is for determination of equivalence of azoxystrobin technical grade only.

EXPRESSION OF THE ACTIVE INGREDIENT

The content of the active ingredient azoxystrobin is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

(i) The proposer confirmed that the toxicological data included in the summary below were derived from azoxystrobin having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Table 2	Mutagenicity profile of the azox	vstrobin technical	material base	d on <i>in vitro</i> tests

Species	Test	Purity % Note	Guideline, duration, doses and conditions	Result	Study number
Salmonella typhimurium TA1535, TA97a, TA98, TA100 and TA 102	Bacterial mutation assay; <i>in vitro</i>	97.93	OECD 471 Five test concentrations of 1000, 300,100, 30 and 10 µg/plate with and without S9 were chosen for mutagenicity evaluation employing five strains of <i>S. typhimurium</i> (TA1535, TA97a, TA98, TA100 and TA102) respectively.	Negative	15497

ANNEX 2 REFERENCES

Study Au number JMPR 2008a	ithor(s)	year 2008	 Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study. Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting on Pesticide Residues. Evaluations, 2008. Part I, Residues. FAO Plant Production and Protection Paper. 194:1-202.
JMPR 2008b		2008	Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting on Pesticide Residues. Report, 2008. FAO Plant Production and Protection Paper. 193:55-95.
FAO, 2017		2017	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Azoxystrobin_2017_05_16.pdf
FAO/WHO Manual,		2016	Manual on development and use of FAO and WHO specifications for pesticides, First edition -third revision
2016			http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/JMPS_Manual_2016/3rd_Amendment_JMPS_Manual.pdf
Chen, 2018			E-mail from Tiechun Chen, sent on 13 July 2018 9:13 [From: <u>chentiechun@caas.cn</u> to <u>laszlo.bura@efsa.europa.eu</u>]
CIPAC, M	Martijn A and Dobrat W	2009	CIPAC Handbook Volume M, p.11
CIPAC, F	Martijn A and Dobrat W	1995	CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Formulated Pesticides
NC-2014- 135		2015	Chemical and Physical Characterization of Azoxystrobin TGAI. Study No. NC-2014-135. GLP. Unpublished.
15497		2016	<i>Salmonella typhimurium</i> , Reverse Mutation Assay of Azoxystrobin TC. Study No. 15497. GLP, Unpublished.

AZOXYSTROBIN FAO/WHO EVALUATION REPORT 571/2016.2

Recommendations

The Meeting recommended that:

- (i) the azoxystrobin TC proposed by Jiangsu Sevencontinent Green Chemical Co., Ltd., be accepted as equivalent to the azoxystrobin reference profile
- (ii) the existing FAO specification for azoxystrobin TC should be extended to encompass the material produced by Jiangsu Sevencontinent Green Chemical Co., Ltd.

Appraisal

The Meeting considered data and information submitted by Jiangsu Sevencontinent Green Chemical Co., Ltd., (Jiangsu Sevencontinent) in 2015 in support of extension of the existing FAO specification for azoxystrobin TC. The data submitted by Jiangsu Sevencontinent were broadly in accordance with the requirements of the Manual on development and use of FAO and WHO specifications for pesticides (November 2010 - second revision of the First Edition) (Section 3.2).

The Meeting was provided by the company with commercially confidential data on the manufacturing process, the manufacturing specification and 5-batch analysis data for azoxystrobin and all detectable impurities at or above 1 g/kg. Furthermore, a data package covering the acute toxicity tests as for Tier-2 was submitted. The manufacturing process used by the proposer is similar to the process used to produce the material the reference specification is based upon.

The company stated that their azoxystrobin TC has been registered in China. A written confirmation was received that the confidential data provided on the manufacturing process and specification of azoxystrobin produced by Jinagsu Sevencontinents are the same as those submitted to ICAMA for registration in China [Chen, 2016].

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data, which have been updated in December 2015. Mass balances were 99.0 - 99.1 % in the 5-batch data. The declared minimum active ingredient content (980 g/kg) was higher than that of the published FAO specification. The company confirmed that their product complies with the existing specification.

The manufacturing limits for those impurities occurring both in the reference profile and in the material under consideration did not exceed the limits in the reference profile, however two new impurities were identified.

The Jiangsu Sevencontinent manufacturing process includes four steps while that the reference is based upon is a one step process. The last step of Jiangsu Sevencontinent process is similar to the reference process. The declared minimum active ingredient content in the TC is 980 g/kg and four impurities were identified. The maximum limits for the impurities were supported by the batch data. Three impurities were declared to occur at levels at or above 1 g/kg, whereas the content of one of the new impurities was always below 1 g/kg in the batches and not specified. The new impurities were screened based on structural similarity and SAR analysis (Toxtree v2.6.6, VAGA v 1.0.8, T.E.S.T. and OECD Toolbox v3.3.0.132). The outcome of the similarity considerations and SAR analysis did not gave rise

to structural alerts and the Meeting concluded, that these impurities should be considered as non-relevant.

The analytical method for the determination of the active ingredient in azoxystrobin technical was GC with FID detection with internal standardisation. The method is the full CIPAC Method 571/TC/M published in Handbook M. The organic impurities were determined by HPLC-UV and GC-FID. The LOQ for impurities ranged from 10 mg/kg to 1 g/kg. Test methods for determination of physico-chemical properties of the technical active ingredient were CIPAC, OECD and EC, where appropriate.

Data on physical-chemical properties like melting point and solubility in organic solvents for technical material (98.05%) were provided. Toxicity data were available for acute toxicity, skin irritation, eye irritation, skin sensitisation and mutagenicity profile (Ames test, micronucleus test) derived from the technical grade active ingredient manufactured by the proposer with a purity of 98.05%. OECD technical guidelines were used. As equivalence could be established on Tier-1, the results of the acute tests were not further considered.

Based on the higher purity and similarity of the impurity profiles of the reference and of the material produced by Jiangsu Sevencontinents and considering the absence of mutagenicity in the OECD 471 and OECD 474 tests, the Meeting concluded that the Jiangsu Sevencontinent azoxystrobin TC was equivalent to the azoxystrobin reference TC based on Tier-1 evidence.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 471/2016.2

Table 1: Chemical composition and properties of azoxystrobin technical material (TC)

Manufacturing process impurities ≥ 1 g/kg, 5 ba	atch analysis data	Confidential information supplied and held on file by FAO. Mass balances were 99.0 – 99.1 %			
Declared minimum azo	xystrobin content	980 g/kg			
Relevant impurities ≥ 1 for them	g/kg and maximum limits	None.			
Relevant impurities < 1 for them:	g/kg and maximum limits	None.			
Stabilisers or other add for them:	None.				
Parameter	Value and conditions	Purity %	Method reference	Study number	
Melting temperature range of the TC and/or TK	116.7 °C	98.05	OECD 102	B2279	
	48.9 g/l toluene at 25 °C	98.05	OECD 105	B2279	
solvents	17.5 g/l methanol at 25 °C	98.5	OECD 105	B2279	

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

The present submission is for determination of equivalence of azoxystrobin technical grade only.

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient (including identity tests) is based on CIPAC 571/TC/M. The azoxystrobin is determined by GC with FID and internal standardisation.

The method(s) for determination of organic impurities are based on analysis by reverse phase liquid chromatography using UV detection and quantification by external standard. Test methods for determination of physico-chemical properties of the technical active ingredient were OECD.

CONTAINERS AND PACKAGING

Not applicable: The present application is for determination of equivalence of azoxystrobin technical grade only.

EXPRESSION OF THE ACTIVE INGREDIENT

The active ingredient is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

(i) The proposer confirmed that the toxicological data included in the summary below were derived from azoxystrobin having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Table 2. Mutagenicity profile of the azoxystrobin technical material based on *in vitro* and *in vivo* tests

Species	Test	Purity % Note	Guideline, duration, doses and conditions	Result	Study number
Salmonella typhimurium TA1535, TA1537, TA98, TA100 and TA 102	Bacterial mutation assay; <i>in vitro</i>	98.05	OECD guidelines 471 (purity 98.05% w/w), doses up to 5000 μg/plate	Negative	JRF-481-1- 06-5064
Mouse bone marrow (m,f)	Mouse bone marrow micronucleus assay, <i>in vivo</i>	98.05	OECD 474 (purity 98.05% w/w), single dose 2000 mg/kg bw	Negative	JRF-485-1- 06-5065

There were no eco-toxicological studies performed with the present source of azoxystrobin technical material.

ANNEX 2

REFERENCES

Study Au number	uthor(s)	year	Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study.
FAO, 2009		2015	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Azoxystrobin2015_10.pdf
FAO/WHO Manual, 2010		2010	Manual on development and use of FAO and WHO specifications for pesticides, November 2010 second revision of the first edition http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesti cides/PestSpecsManual2010.pdf
Chen, 2016			E-mail from Tiechun Chen, sent on 11 April 2016 11:00 [From: <u>chentiechun@caas.cn</u> to <u>laszlo.bura@efsa.europa.eu</u>]
CIPAC, M	Martijn A and Dobrat W	2009	CIPAC Handbook Volume M, p.11
CIPAC, F	Martijn A and Dobrat W	1995	CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Formulated Pesticides
B2279		2013	Physical and Chemical properties of one batch of Azoxystrobin TC. Study No. B2279. GLP.
JRF-481-1- 06-5064	KIRTI E.TENDUL KAR		Bacterial reverse mutation test of Azoxystrobin Technical using Salmonella typhimurium. JRF Laboratorios, India. GLP. Report No. JRF-481-1-06-5064. Unpublished.
JRF-485-1- 06-5065	SHEKHAR S. GAIKWAD	2013	Micronucleus test of Azoxystrobin Technical in mice. JRF Laboratorios, India. GLP. Report No. JRF-485-1-06-5065. Unpublished.

AZOXYSTROBIN FAO/WHO EVALUATION REPORT 571/2016.1

Recommendations

The Meeting recommended that:

- (i) the azoxystrobin TC proposed by Nutrichem Co., Ltd., be accepted as equivalent to the azoxystrobin reference profile
- (ii) the existing FAO specification for azoxystrobin TC should be extended to encompass the technical material produced by Nutrichem Co., Ltd.

Appraisal

Data provided by Nutrichem Co., Ltd (Nutrichem) for azoxystrobin TC were evaluated in support of the determination of equivalence with the existing FAO specification for azoxystrobin. Azoxystrobin was evaluated by the FAO/WHO JMPR and WHO/IPCS in 2008. [JMPR 2008a, JMPR 2008b]

The data for azoxystrobin were evaluated in support of new FAO specifications based on the draft specifications and the supporting data provided by Syngenta Crop Protection AG in 2007, for extension of specifications for Makhteshim Chemical Works (now ADAMA) in 2009 and in support of the determination of equivalence for Helm AG in 2013. The FAO full specifications for azoxystrobin were published in 2007, 2009 and 2015. [FAO, 2015]

Supporting data on azoxystrobin TC formulation was provided by Nutrichem Co., Ltd. in support of an equivalence determination with the reference profile that supports the existing azoxystrobin FAO specification 571/TC (April 2016).

The data submitted were in accordance with the requirements of the [FAO/WHO Manual, 2010] and supported the existing specification. Nutrichem's azoxystrobin is registered in Brasil, however the confidential data provided on the manufacturing process of azoxystrobin are different to those submitted to FAO. [IBAMA, 2016] It was explained that the five-batch data submitted in Brasil were not generated with the CIPAC method, while the batch data for the FAO submission were generated with the existing CIPAC method. A bridging study was requested and evaluated and no significant difference in results was found using the two methods.

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data. Mass balances were 98.97 – 99.53 % in the 5-batch data. The declared minimum active ingredient content (980 g/kg) was higher than that of the FAO specification. Nutrichem confirmed that their product complies with the existing specification. The manufacturing limits for common impurities identified in the technical material did not exceed the limits in the reference profile. There were no new impurities identified.

Nutrichem's manufacturing process includes 4 steps while the reference is presented as one step process which is identical to the 4th step of Nutrichem. The declared minimum active ingredient content in the TC was 980 g/kg. The maximum limits for the impurities were supported by the batch data.

The analytical method for the determination of the active ingredient in azoxystrobin technical was GC with FID detection using internal standardisation. The method is the full CIPAC Method 571/TC/M/3 published in Handbook M. The organic impurities were determined by HPLC-UV and GC-FID. The LOQ for impurities ranged from 0.1 g/kg to 0.8 g/kg. Test methods for determination of physico-chemical properties of the technical active ingredient were CIPAC, OECD and EC where appropriate.

Data on physical-chemical properties (melting point, vapour pressure, solubility in water, solubility in organic solvents, octanol/water partition coefficient, hydrolysis characteristics, photolysis characteristics) for technical material (98.8%) were provided. Toxicity data available was for mutagenicity profile (Ames test) derived from the technical grade active ingredient manufactured by the proposer with a purity of 98.6%. OECD test method was used. Results are similar to those provided for the reference profile.

Based on the higher purity and similarity of the impurity profiles of the reference TC and Nutrichem's product and considering the absence of mutagenicity in the OECD 471 test, the Meeting concluded that the Nutrichem' azoxystrobin TC was equivalent to the azoxystrobin reference TC based on Tier-1.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 471/2016.1

Table 1: Chemical composition and properties of azoxystrobin technical material (TC)

for impurities \geq 1 g/kg, 5 batch analysis				information supplie Mass balances w	
Declared minimum az content	zoxystrobinsd	980 g/kg			
Relevant impurities ≥ maximum limits for th		None	9.		
Relevant impurities < maximum limits for th		None).		
Stabilisers or other ac maximum limits for th		None.			
Parameter	Value and conditions		Purity %	Method reference	Study number
Melting temperature range of the TC and/or TK	114.2-115.3 °C		98.8	EPA Guideline 830.7200	NC-2013-100
Solubility in organic solvents	16.1g/l methanol at 20 \pm 0.5°C		98.8	EPA Guideline 830. 7840	NC-2013-100
	1.3g/l n-octanol at 20 ± 0.5°C 40.8 mg/l hexane at 20 ± 0.5°C				

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

The present submission is for determination of equivalence of azoxystrobin technical grade only.

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient (including identity tests) is based on CIPAC 571/TC/M. The azoxystrobin is determined by GC with FID and internal standardisation.

The methods for determination of organic impurities are based on analysis by reverse phase liquid chromatography using UV detection and quantification by external standard and by capillary GC with FID and internal standardisation. Test methods for determination of physico-chemical properties of the technical active ingredient were OECD.

CONTAINERS AND PACKAGING

The present application is for determination of equivalence of azoxystrobin technical grade only.

EXPRESSION OF THE ACTIVE INGREDIENT

The content of the active ingredient azoxystrobin is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

(i) The proposer confirmed that the toxicological data included in Table 1 above were derived from azoxystrobin having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Species	Test	Purity % Note	Guideline, duration, doses and conditions	Result	Study number
Salmonella typhimurium strains TA98, TA100, TA102, TA1535 and TA1537	Ames Test –in vitro	98.6	OECD Guideline 471 64h 156.25, 312.50, 625.00, 1250.00, 2500.00 and 5000.00 μg/plate	Negative	GL00490

Table 2. Mutagenicity profile of the azoxystrobin technical material based on *in vitro* tests

ANNEX 2

REFERENCES

Study number	Author(s) year	Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study.
JMPR 2008a	2008	Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting
		on Pesticide Residues. Evaluations, 2008. Part I, Residues. FAO Plant
JMPR 2008b	2008	Production and Protection Paper. 194:1-202. Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting
		on Pesticide Residues. Report, 2008. FAO Plant Production and Protection Paper. 193:55-95.
FAO, 2009	2015	http://www.fao.org/fileadmin/templates/agphome/documents/Pests_ Pesticides/Specs/Azoxystrobin2015_10.pdf
FAO/WHO Manual, 2010	2010	Manual on development and use of FAO and WHO specifications for pesticides, November 2010 second revision of the first edition http://www.fao.org/fileadmin/templates/agphome/documents/Pests_ Pesticides/PestSpecsManual2010.pdf
IBAMA, 2016		E-mail from , sent on 6 July 2016 17:50 [From: coasp.sede@ibama.gov.br to <u>laszlo.bura@efsa.europa.eu]</u>
CIPAC, M	Martijn A 2009 and Dobrat W	CIPAC Handbook Volume M, p.11
CIPAC, F	Martijn A 1995 and Dobrat W	CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Formulated Pesticides
NC-2013- 102	Yue 2013 Wang	Validation of Analytical Methodology for the Assay of Active Ingredient and Significant Impurities in Azoxystrobin TGAI. Report NC-2013-102. GLP. Nutrichem Laboratory Co., Ltd., China. Unpublished.
NC-2013- 093	Yue 2013 Wang	Preliminary Analysis of Azoxystrobin TGAI. Study NC-2013-093. Report NC-2013-093. GLP. Nutrichem Laboratory Co., Ltd., China. Unpublished.
NC-2013- 100	Hongxia 2013 Li	Chemical and Physical Characterization of Azoxystrobin TGAI: Melting Point, Partition Coefficient, Solubility, Vapor Pressure and Volatility. Report NC-2013-100. GLP. Nutrichem Laboratory Co., Ltd., China. Unpublished.
NC-2013- 101	Hongxia 2013 Li	Chemical and Physical Characterization of Azoxystrobin TGAI: Hydrolysis, Photolysis, Explodability, Oxidizing, Surface Tension, Soil/Water Adsorption Coefficient, Corrosiveness to metals and Reactivity with the packaging material. Report NC-2013-101. GLP. Nutrichem Laboratory Co., Ltd., China. Unpublished.
GL00490	2016	Bacterial Reverse Mutation Test of Azoxystrobin TGAI Using Salmonella typhimurium Tester Strain (Ames Test) Report GL00490. GLP. Unpublished.

AZOXYSTROBIN

FAO/WHO EVALUATION REPORT 571/2013

Recommendations

The Meeting recommended:

(i) that the azoxystrobin TC proposed by Helm AG be accepted as equivalent to the azoxystrobin reference profile

(ii) to extend the existing TC specification to the technical material produced by Helm AG

Appraisal

Azoxystrobin is a fungicide belonging to the strobilurin family and is used for the control of a wide variety of fungal diseases in agricultural crops. Azoxystrobin is not under patent.

A data package provided by Helm AG (Helm) for azoxystrobin TC in 2010 was evaluated in support of the determination of equivalence with the existing FAO specification for that compound. Azoxystrobin has been evaluated by the FAO/WHO JMPR and WHO/IPCS in 2008. [JMPR 2008a, JMPR 2008b].

Supporting data on azoxystrobin TC was provided by Helm AG for an equivalence determination with the reference profile FAO specification 571/TC (August 2009). The data package for the TC reference profile and formulated products has been submitted by Syngenta in 2007 and later extended to the technical material produced by Makhteshim (now Adama) in 2009.

The data submitted were in accordance with the requirements of the FAO/WHO Manual, [2010] and supported the existing specifications. The confidential data provided on the manufacturing process of azoxystrobin are the same as those submitted for registration in Mexico, however there were differences in the batch data. [Vidaca, 2013] The explanation was that the batch data submitted to Mexico were dated before the re-analysis of the same batches by HPLC, requested by the JMPS.

The Meeting was provided with commercially confidential information on the manufacturing process and batch analysis data, which have ben updated in 2012. Only one of the impurities present in batches was above 1 g/kg and as a consequence included in the specification of the TC. Mass balances were 99.5 – 99.9 % in the 5-batch data. The declared minimum active ingredient content (970 g/kg) was higher than that of the FAO specification. Helm confirmed that their product complies with the existing specification, however based on the Helm's data a higher value could have been proposed.

Manufacturing limits for impurities identified in the technical material did not exceed the limits in the reference profile. There were no new impurities identified. Helm's manufacturing process is comprised of several steps while Syngenta's is a one step process which is the same as the last step of Helm AG. The declared minimum active ingredient content in the TC is 970 g/kg. Two impurities were identified and specified at concentrations > 1 g/kg, whereas eight other impurities were detected in the range from 0.036 g/kg to 0.72 g/kg. They were

declared as consistently being below 1 g/kg and hence below the generic threshold limit of 1 g/kg for non-relevant impurities. Accordingly, Helm AG confirmed that their product complied with the existing specification. The Meeting noticed that in the first submission the five batch data were generated using GC-FID and GC-MS and as a conclusion some potential impurities which could occur on the basis of the manufacturing process could not have been identified, if present. The company conducted a new five batch study using HPLC-UV and an additional impurity above 1 g/kg was identified, whose limit was below the respective limit in the reference profile.

The azoxystrobin content in TC was determined by GC with FID detection and internal standardisation in the initial submission. The method is CIPAC Method 571/TC/M and published in Handbook M. The methods for the determination of impurities were based on GC/FID and GC/MS.

In the updated submission the analytical method for the active ingredient and impurities was reversed-phase HPLC with UV detection, the amount of certain unidentified impurities were estimated using the response factor of the anlytical standard of the active ingredient azoxystrobin to ensure they were below 1 g/kg.

Data on physical-chemical properties like melting point and solubility in organic solvents for technical material (98.5%) were provided. OECD test methods were used. The same batch with a purity of 98.5% was used for studies of acute toxicity, skin irritation, eye irritation, skin sensitisation and mutagenicity profile (Ames test, Micronucleus test). Results are similar to those provided for the reference profile.

Based on the similarity of the purity and impurity profiles of the reference and of Helm's product and absence of mutagenicity in the OECD 471 test, the Meeting concluded that the Helm AG azoxystrobin TC was equivalent to the azoxystrobin reference TC based on Tier-1.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 471/2013

Table 1: Chemical composition and properties of azoxystrobin technical material (TC)

Manufacturing process,	maximum limits for	Conf	idontial	information supplie	and held on
•				Mass balances we	
impurities \geq 1 g/kg, 5 ba	me b <u>.</u> %	y FAO.	Mass balances we	ere 99.5 - 99.9	
Declared minimum azo	xystrobin content	970 g	g/kg		
Relevant impurities ≥ 1 limits for them	g/kg and maximum	None).		
Relevant impurities < 1 limits for them:	g/kg and maximum	None) .		
Stabilisers or other add limits for them:	itives and maximum	None).		
Parameter	Value and conditior	าร	Purity %	Method reference	Study number
Melting temperature range of the TC	116–118°C		98.5	OECD 102	48401180
Solubility in organic solvents	14.97 g/l methanol a °C		98.5	OECD 105	48408201
	257.80 g/l acetone °C	at 20	98.5	OECD 105	48408201
	17.16 g/l p-xylene a °C	at 20	98.5	OECD 105	48408201
	425.38 g/l dichloromethane at °C	20	98.5	OECD 105	48408201
	282.48 g/l ethyl ace at 20 °C		98.5	OECD 105	48408201
	< 0.05 g/l n-heptane 20 °C	e at	98.5	OECD 105	48408201

FORMULATIONS AND CO-FORMULATED ACTIVE INGREDIENTS

Formulations and co-formulated active ingredients The present application is for determination of equivalence of azoxystrobin technical grade only.

METHODS OF ANALYSIS AND TESTING

The analytical method for the active ingredient (including identity tests) is based on CIPAC 571/TC/M. The azoxystrobin is determined by GC with FID and internal standardisation. The methods for determination of impurities are based on analysis by reverse phase liquid chromatography using UV detection and quantification by external standard. Test methods for determination of physico-chemical properties of the technical active ingredient were OECD.

EXPRESSION OF THE ACTIVE INGREDIENT

The active ingredient is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Notes.

(i) The proposer confirmed that the toxicological and ecotoxicological data included in the summary below were derived from azoxystrobin having impurity profiles similar to those referred to in the table above.

(ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Species	Test	Purity % Note ²	Guideline	Result	Study number
Salmonella typhimurium	Ames Test – <i>in vitro</i>	98.5	OECD 471 Five test concentrations of 31.6, 100, 316, 1000, 2500 and 5000 µg/plate with and without S9 were chosen for mutagenicity evaluation employing five strains of <i>S.</i> <i>typhimurium</i> (TA100, TA102, TA1535, TA98 and TA1537), respectively.	Negative	090142

 Table 2.
 Mutagenicity profile of the azoxystrobin technical material based on *in vitro* tests

² Note: Purity is the content of pure active ingredient in the technical material, expressed as a percentage.

ANNEX 2

REFERENCES

Study Author(s) number	year Study title. Study identification number. Report identification number. GLP [if GLP]. Company conducting the study.
JMPR	2008 Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO
2008a	Meeting on Pesticide Residues. Evaluations, 2008. Part I, Residues. FAO
	Plant
	Production and Protection Paper. 194:1-202.
JMPR	2008 Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO
2008b	Meeting
	on Pesticide Residues. Report, 2008. FAO Plant Production and
	Protection Paper. 193:55-95.
FAO, 2009	2009 http://www.fao.org/fileadmin/templates/agphome/documents/Pests_ Pesticides/Specs/Azoxystrobin09.pdf
FAO/WHO	2010 Manual on development and use of FAO and WHO specifications
Manual,	for pesticides, November 2010 second revision of the first edition
2010	http://www.fao.org/agriculture/crops/thematic-
	sitemap/theme/pests/jmps/manual/en/
Vidaca,	2013 E-mail from Marco Antonio Arias Vidaca, Executive Director of
2013	Authorization of Products and Establishment (Mexico), sent on 27
	February 2013 2:26 [From: mvidaca@cofepris.gob.mx to
	YongZhen.Yang@fao.org]
090142	2009 Reverse Mutation Assay using Bacteria (Salmonella typhimurium)
000440	with Azoxystrobin TC. Study 090142. GLP. Unpublished.
090143	2009 Mammalian Micronucleus Test of Murine Peripheral Blood Cells
	with Azoxystrobin TC. Study 090143. GLP.

AZOXYSTROBIN

FAO/WHO EVALUATION REPORT 571/2009

Recommendation

The Meeting recommended that

(i) the existing FAO specifications for azoxystrobin TC, WG and SC should be extended to encompass the products of Makhteshim Chemical Works

Appraisal

Data provided by Makhteshim Chemical for azoxystrobin in 2008 were evaluated in support of an equivalence determination with the existing FAO specifications. Makhteshim azoxystrobin suspension concentrate is currently registered in the United Kingdom.

The confidential data provided on the manufacturing process and batch analyses of azoxystrobin are identical to those submitted for registration in UK.

As some differences in the proposed specifications for azoxystrobin TC, WG and SC became evident which were not expected to adversely affect hazard, the existing FAO specifications had to be extended to encompass the material of Maktheshim. This holds for the specifications as follows:

TC:.The Makhteshim TC is described as ".....a yellowish powder..." whereas the reference is an off-white powder. The description was modified to include the yellowish powder.as "... an off-white to light brown powder ...".

The declared minimum active ingredient content (965 g/kg) agrees with that of the FAO specification.

WG: For the WG, data were available on: flowability, pH, wettability, persistent foam, dispersibility, suspensibility, wet sieve, dustiness, attrition resistance and accelerated storage testing (54 °C). The WG formulation generally complied with all specification clauses except the pH range with measured values of 9.7 before and after storage (specification pH range 5 to 7.5).

Azoxystrobin was reported as stable to hydrolysis (<10 % loss) at pH 5, 7 and 9 and 25 °C when tested for 31 days. Its half-life (DT₅₀) was estimated at 12 days and 2 hours at pH 9 and 50 °C (EFSA, 2010³). The content of active ingredient in a WG of pH 9.7 complied with the specification in the elevated temperature storage stability test, demonstrating stability in a WG at pH 9.7. Makhteshim provided information that

³ Note added in editing 2019: the 2009 original version of the appraisal contained a reference to a EU draft assessment report (DAR) prepared by the German BVL and directly accessible from the BVL website as download. As the German BVL does no longer provide its DAR as downloads, the reference was replaced with the EFSA peer review published in the EFSA Journal providing the same information in a condensed form.

the measured pH of two other WG batches was 8.4. Furthermore, the calcium carbonate filler material was responsible for the alkaline pH.

The 2007 JMPS had questioned the requirement for control of pH. "The manufacturer explained that product stability was known to be acceptable within the proposed pH ranges, whereas certain formulants may be adversely affected at more extreme pH values and the active ingredient is more stable at pH below 9." The 2007 Meeting therefore accepted the proposed limits.

The additional evidence now suggests that a pH specification is not necessary for quality control. The Meeting agreed to delete the pH range specification for azoxystrobin WG formulations and to amend the WG specifications accordingly.

SC: Data were available on the following clauses: pH, spontaneity of dispersion, suspensibility, wet sieve, pourability, persistent foam, accelerated storage testing (54 °C) and storage stability at 0 °C. The SC formulations generally complied with all specifications except pourability with measured values of 7.5-8.0 % (specification 5 %).

The Meeting agreed that 8 % is an acceptable value for pourability and that the specification could be increased to 8 % to include this product.

Manufacturing limits for impurities identified in the technical material did not exceed the limits in the reference profile. No new impurities were identified. Mass balances were in the range of 99.3-99.8 %.. It should be noted that at the time of data submission this material was not in commercial production and the manufacturing limits had been calculated from the results of the 5-batch analyses.

The analytical method for the active ingredient, azoxystrobin, was reversed-phase HPLC with UV detection. HPLC-UV, and others also determined some impurities by GC-MSD. Validation data were provided for azoxystrobin and the impurities. Methods for the impurities were validated to LOQs of 0.5 g/kg in the TC.

Toxicity data were available for rat acute oral, rat acute dermal, rat acute inhalation, rabbit eye irritation, rabbit skin irritation and guinea-pig skin sensitization. The ratings were equivalent to those of the reference material.

The Meeting concluded that the Makhteshim azoxystrobin TC was equivalent to the azoxystrobin reference TC.

The physical and chemical properties of pure and technical grade active ingredient were essentially the same as those for the reference material for melting point, water solubility and log P_{ow}.

The vapour pressures at 20 °C were substantially different: 1.1×10^{-10} Pa for the reference material and 6.3×10^{-9} Pa for the pure material from Makhteshim. For the reference material, measurements were made on the solid at elevated temperatures and for the Makhteshim material, measurements were made on the liquid at elevated temperatures. In both cases the elevated temperature values were extrapolated to 20 °C values. Most likely the difference is because the reference material vapour pressure is for solid and the Makhteshim material is for theoretical liquid at 20 °C.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 571/2009

Physico-chemical properties of azoxystrobin

Parameter	Value(s) and conditions	Purity %	Method reference	Study ref
Pure azoxystrobi	n			
Vapour pressure	6.3 x 10^{-9} Pa at 20 °C (extrapolated from liquid phase measurements at 116.9 to 151.3 °C). Note ¹	99.2 %	OECD 104, effusion. Measurements from 103.1 to 151.3 °C	R-24107
Temperature of decomposition	265 °C by differential thermal calorimetric scanning (nitrogen atmosphere)	99.2 %	OECD 113	R-24107
Technical grade	material			
Melting point	115.9 °C	97.2 %	OECD 102	PE DEPDA 018/07-BPL
Solubility in water	5.6 \pm 0.2 mg/l at 20 °C at pH 5.91. No pH dependency can be expected from structural formula	96.9 %	OECD 105	R-21824
Solubility in acetone	94.3±0.79 g/l at 20 °C	96.9 %	based on OECD 105	R-21824
Solubility in methanol	22.7±0.46 g/l at 20 °C	96.9 %	based on OECD 105	R-21824
Octanol-water partition coefficient	log Pow = 2.71 at 20 °C at pH 5.03. No pH dependency can be expected from structural formula	96.9 %	OECD 107	R-21827
Hydrolysis	no data	no data		
Photolysis	no data	no data		
Dissociation characteristics	does not dissociate	no data		

Table 1. Physical and chemical properties of pure and technical grade azoxystrobin.

Note¹ Vapour pressure measurements were made over the temperature range 103.1 to 151.3 °C with 2 measurements on the solid (103.1 and 109.0 °C) and 10 on the liquid (116.9 to 151.3 °C). Extrapolation beyond the range of measurement relies on the Clapeyron-Clausius equation.

$$\ln(p) = \frac{\Delta H v}{RT} + const$$

p: vapour pressure

 $\triangle Hv$: heat of vaporization

R: gas constant

T: absolute temperature

The extrapolation is valid only over the temperature range where $\triangle Hv$ is constant and it is not constant through a liquid-solid phase change.

If the vapour pressure measurements for the liquid phase are extrapolated to 20 °C, the extrapolated value at 20 °C represents a theoretical vapour pressure for liquid phase at 20 °C.

It should be noted that the vapour pressure recorded for azoxystrobin in the 2007 JMPS Evaluation

 $(1.1 \times 10^{-10} \text{ Pa at } 20 \text{ °C})$ was based on an extrapolation from measurements on azoxystrobin all below its melting point, i.e. an extrapolation from vapour pressure measurements on solid phase.

Table 2. Chemical composition and properties of azoxystrobin technical materials (TC)

Manufacturing process, maximum limits for impurities \geq 1 g/kg, 5 batch analysis data	Confidential information supplied and held on file by FAO. Mass balances were 99.3-99.8 %. Percentages of unknowns were 0.3-0.7 %.
Declared minimum active ingredient content	965 g/kg
Relevant impurities \geq 1 g/kg and maximum limits for them	None
Relevant impurities < 1 g/kg and maximum limits for them:	None
Stabilisers or other additives and maximum limits for them:	None
Melting temperature range of the TC	115.9 °C

Formulations

The main formulation type available for Makhteshim azoxystrobin is the SC. Azoxystrobin may be co-formulated with other active ingredients. Makhteshim formulations are currently registered and sold e.g. in the United Kingdom.

Physical properties of azoxystrobin formulations

The physical properties, the methods for testing them and the limits proposed for the SC and WG formulations, comply with the requirements of the FAO Manual (FAO, 2006).

Methods of analysis and testing

Test methods for determination of physico-chemical properties of the technical active ingredient were OECD, EPA, EC, while those for the formulations were CIPAC as indicated in the specifications.

Containers and packaging

No special requirements for containers and packaging have been identified.

Expression of the active ingredient

The active ingredient is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Note: Makhteshim provided written confirmation that the toxicological data included in the following summary were derived from azoxystrobin having impurity profiles similar to those referred to in Table 2, above

Species	Test	Duration and conditions or guideline adopted	Result	Study ref
Rat (f)	oral	OECD 423, 6 animals. Single dose 2000 mg/kg bw administered in corn oil purity 96.9 % w/w, observed for 14 days.	LD ₅₀ > 2000 mg/kg bw no adverse effects	RF- 0023.305.401.06
Rat, (m,f)	dermal	OECD 402, 10 animals. Single dose 2000 mg/kg bw administered in corn oil, 24-hours skin contact exposure purity 96.9 % w/w, observed for 14 days.	LD ₅₀ > 2000 mg/kg bw no adverse effects	RF- 0023.310.381.06
Rat, (m,f)	inhalation	OECD 403, 10 animals (5M+5F) per dose. powder aerosol 0.18, 0.38, 0.93 mg/l air, 4-hours nose only exposure. Purity 98.4 % w/w. Observed for 14 days after exposure.	LC50 ~ 0.38 mg/l air	R-24802
Rabbit (m)	skin irritation	OECD 404, 3 animals. Single dose 0.5 g/kg bw 4 h dermal exposure, purity 96.9% w/w, observed for 72 hours.	Not irritating	RF- 0023.311.401.06
Rabbit (m,f)	eye irritation	OECD 405, 3 animals. Single instillation of 100 mg in one eye purity 96.9% w/w. observed for 7 days.	Not irritating	RF- 0023.312.499.06
Guinea pig (m)	skin sensitisation Buehler test	OECD 406, 20 animals applied undiluted 0.5 g/animal for both induction and challenge purity 96.9% w/w.	Not sensitizing	RF- 0023.318.358.06

Table A. Toxicology profile of the azoxystrobin technical material, based on acute toxicity, irritation and sensitization

Technical azoxystrobin is of low acute toxicity upon oral or dermal administration and of moderate toxicity by the inhalation route. It is a slight skin and eye irritant. According to EU guidelines, classification and labelling as a skin or eye irritant are not required. The compound is not a skin sensitizer.

Classification of azoxystrobin based on GHS conclusions for toxicity would be (O'Brien, 2009):

Category:	4.
GHS pictogram:	diamond with exclamation mark.
Signal word:	Warning.
Hazard sentences:	H332 Harmful if inhaled.
Precautionary sentences:	P304 + P340, P312.
CHRONIC TOXICITY	

No information was available on subacute to chronic toxicity of the azoxystrobin technical material.

MUTAGENICITY

No information was available on the mutagenicity profile of the azoxystrobin technical material.

ECOTOXICITY

No information was available on ecotoxicity of the azoxystrobin technical material.

REFERENCES (SORTED BY REPORT OR STUDY NUMBER) 2006 Manual on development and use of FAO and WHO specifications for FAO pesticides. March 2006 revision of the First Edition. Pesticide Specifications. FAO 2008 FAO specifications and evaluations for azoxystrobin. **EFSA** 2010 Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin, EFSA Journal 2010; 8(4):1542 2008 Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting on **JMPR** Pesticide Residues. Evaluations, 2008. Part I, Residues. FAO Plant а Production and Protection Paper. 194:1-202. 2008 Azoxystrobin. Pesticide residues in food 2008. Joint FAO/WHO Meeting on **JMPR** Pesticide Residues. Report, 2008. FAO Plant Production and Protection h Paper. 193:55-95. 1995 CIPAC Handbook Volume F. Physico-chemical Methods for Technical and Martijn A and Dobrat W Formulated Pesticides. Martijn A and 2000 CIPAC Handbook Volume J. Analysis of Technical and Formulated Dobrat W Pesticides. O'Brien K 2009 RE: KO090514 JMPS 2009 Azoxystrobin evaluation. Email, 27-May-2009. Unpublished. 20061387/01-2006 Physico-chemical properties of the formulation MCW 403 250 SC. before and after accelerated storage at 54 °C for 2 weeks. Study code R-20977. PCAS Sponsor: Irvita Plant Protection. Test facility: Eurofins-GAB GmbH, Germany. Unpublished. 20061387/01-2006 Relative density of MCW 403 250 SC. Study code R-20973. Sponsor: Irvita Plant Protection. Test facility: Eurofins-GAB GmbH, Germany. Unpublished. PCRD 20071255/01-2007 Physico-chemical properties of the formulation MCW 403 500 WDG (Azoxystrobin 500 WDG) after accelerated storage at 54 °C for 2 weeks. PCAS Study code R-21768. Sponsor: Irvita Plant Protection. Test facility: Eurofins-GAB GmbH, Germany. Unpublished. 20071255/01-2007 Physico-chemical properties of the formulation MCW 403 500 WDG (Azoxystrobin 500 WDG). Study code R-21767. Sponsor: Irvita Plant PCF0 Protection. Test facility: Eurofins-GAB GmbH, Germany. Unpublished. 20071255/01-2007 Flowability of the formulation MCW 403 500 WDG. Study code R-21766. Sponsor: Irvita Plant Protection. Test facility: Eurofins-GAB GmbH, Germany. PCFL Unpublished. 20071255/01-2007 Pour and tap density of MCW 403 500 WDG. Study code R-21765. Sponsor: Irvita Plant Protection. Test facility: Eurofins-GAB GmbH, Germany. PCTD Unpublished. PE DEPDA 2007 Determination of melting point of MIL S 130/05 azoxystrobin. Testing facility: Milenia Agrociências S/A. Londrina-Paraná. Brasil. GLP. Study PE DEPDA 018/07-BPL 018/07-BPL. Unpublished. R-21072 2007 Determination of active ingredient and impurities in five batches of MCW 403 Technical. Testing facility: eurofins-GAB GmbH, Niefern-Öschelbronn, Germany. GLP. Report R-21072. Unpublished. R-21824 2007 Solubility of MIL S 130/05 in water and organic solvents. Testing facility: BIOAGRI Laboratorios Ltda., Piracicaba-SP, Brazil. GLP. Study 0023.008.447.06. Report R-21824. Unpublished. 2007 Partition coefficient (n-octanol/water) of MIL S 130/05. Testing facility: R-21827 BIOAGRI Laboratorios Ltda., Piracicaba-SP, Brazil. GLP. Study 0023.014.159.06.Report No. R-21827. Unpublished. R-24107 2008 Azoxystrobin, Vapour pressure A.4. (OECD 104), Testing facility; Siemens AG, Prozess-Sicherheit, Frankfurt am Main, Germany. GLP. Report R-24107. Unpublished.

R-24802 2009	Acute inhalation toxicity of MCW 403-technical in rats (<i>Rattus norvegicus</i>). Irvita Plant Protection, a Branch of Celsius Property B.V., Netherlands Antilles. Study by Microquim S.A., Argentina. GLP. Report R-24802. Unpublished.
RF- 2007 0023.305.401.06	Acute oral toxicity study with MIL S 130/05 in rats. BIOAGRI Laboratorios, Brazil. GLP. Report RF-0023.305.401.06. Unpublished.
RF- 2006 0023.310.381.06	Acute dermal toxicity study with MIL S 130/05 in rats. BIOAGRI Laboratorios, Brazil. GLP. Report RF-0023.310.381.06. Unpublished.
RF- 2006 0023.311.401.06	Acute dermal irritation/corrosion study in rabbits with MIL S 130/05. BIOAGRI Laboratorios, Brazil. GLP. Report RF-0023.311.401.06. Unpublished.
RF- 2006 0023.312.499.06	Acute eye irritation/corrosion study in rabbits with MIL S 130/05. BIOAGRI Laboratorios, Brazil. GLP. Report RF-0023.312.499.06. Unpublished.
RF- 2006	Skin sensitisation test of MIL S 130/05 in guinea pigs (<i>Cavia porcellus</i>).
0023.318.358.06	(Buehler test method). BIOAGRI Laboratorios, Brazil. GLP. Report RF- 0023.318.358.06. Unpublished.

AZOXYSTROBIN

FAO/WHO EVALUATION REPORT 571/2007

Recommendation

The Meeting recommended that the specifications for azoxystrobin TC, WG and SC, proposed by Syngenta Crop Protection AG, should be adopted by FAO.

Appraisal

Data provided by Syngenta Crop Protection AG for azoxystrobin in 2006 were evaluated in support of proposed new FAO specifications for TC, SC and WG.

Azoxystrobin has not been evaluated by the FAO/WHO JMPR or IPCS, but has been reviewed by the US EPA and the EU.

Azoxystrobin is under patent in most countries until 2010.

Azoxystrobin is a solid, melting at 116°C. Its water solubility is about 6 mg/l and is not pH dependent. It is very soluble in certain organic solvents but its octanol-water partition coefficient (log $P_{OW} = 2.5$) does not indicate fat solubility. It has a low vapour pressure and Henry's constant, therefore significant volatilization is not expected. Azoxystrobin is stable at pH 4-9 and it is degraded only slowly by photolysis.

The Meeting was provided with details of the manufacturing process, 5 batch analysis data (production from March to December 2005), and manufacturing limits for azoxystrobin content and impurities present at or above 1 g/kg. Mass balances were high (98.7-99.6%), no unknowns (\geq 1 g/kg) were detected and the minimum active ingredient in technical material was 965 g/kg. The current manufacturing process produces a higher purity than previously and no new impurities have been found. The data were confirmed as being essentially similar to those submitted for registration in the UK, with the exception of an increase in the minimum azoxystrobin content from 930 g/kg to 965 g/kg in the current manufacturing specification.

The Meeting agreed that none of the impurities should be considered relevant.

Analytical methods for the determination of azoxystrobin and impurities were based on gas chromatography. The method for determination of azoxystrobin in TC, WG and SC and was adopted by CIPAC in 2007, with provisional status.

The proposed specifications were broadly in accordance with the requirements of the manual (FAO/WHO 2006) but the following issues were addressed by the Meeting.

<u>WG and SC</u>. The Meeting questioned the requirement for control of pH. The manufacturer explained that product stability was known to be acceptable within the proposed pH ranges, whereas certain formulants may be adversely affected at more extreme pH values and the active ingredient is more stable at pH <9. The Meeting therefore accepted the proposed limits.

<u>WG</u>. The Meeting questioned the proposed limits of 60% for suspensibility and 60 ml of persistent foam, as both represented the maximum normally accepted. The manufacturer explained that the dispersed particles are relatively large and the

surfactants required for the product mean that neither limit can be changed Based on experience of selling the product over a number of years, the manufacturer stated that these properties have not caused any problems in use. The Meeting therefore accepted the proposed limits. The Meeting considered a proposed limit of 80% attrition resistance to be low for an extruded WG. After reconsideration of the supporting data, the manufacturer stated that it would be possible to comply with a limit of 90% and this was agreed by the Meeting.

<u>SC</u>. The manufacturer proposed a non-standard pourability sub-clause for "rinsed residue" but agreed with the Meeting that this characteristic should not be specified. The manufacturer also proposed non-standard clauses for viscosity and particle size distribution but agreed with the Meeting that, although these characteristics may be important for manufacturing purposes, they should not form part of the FAO specification.

SUPPORTING INFORMATION

FOR

EVALUATION REPORT 571/2007

Uses

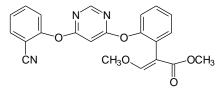
Azoxystrobin is a systemic fungicide, its activity resulting from inhibition of electron transfer between cytochrome b and cytochrome c in fungal mitochondria.

It is used for the control of a wide variety of fungal diseases in agriculture/horticulture and viticulture.

Identity of the active ingredient

ISO common name:

Azoxystrobin (E-ISO, BSI)


Chemical name(s):

- IUPAC, methyl (*E*)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3methoxyacrylate
- CA, methyl (*E*)-2-[[6-(2-cyanophenoxy)-4-pyrimidinyl]oxy]-α-(methoxymethylene) benzeneacetate (9CI)

Synonyms:

none

Structural formula:

Molecular formula:

C22H17N3O5

Relative molecular mass:

403.4

CAS Registry number:

131860-33-8

CIPAC number:

571

Identity tests:

GC retention time; IR spectrum

Physico-chemical properties of azoxystrobin

Table I. Fliysic	o-chemical properties of	pure azoxystropin			
Parameter	Value(s) and conditions	Purity %	Method	Reference	
Vapour pressure	1.1 x 10 ⁻¹⁰ Pa at 20°C	99.0	OECD 104, by extrapolation	ICI5504/0028	
Melting point	116°C	99.0	OECD 102	ICI5504/0028	
Boiling point, temperature of decomposition	Boiling point: cannot be determined at atmospheric pressure Decomposition temperature: ~345°C	99.0	OECD 113	ICI5504/0039	
Solubility in water at 20°C	6.0 mg/l at 20°C in purified water, approximately neutral pH	99.0	EPA Guideline CG-1510	ICI5504/0028	
Partition coefficient	$\log P_{OW} = 2.5 \text{ at } 20^{\circ}\text{C} \text{ at pH 7}$	99.0	OECD 107	ICI5504/0028	
Hydrolysis characteristics	Half-life = 12 days at 50°C at pH 9 No significant hydrolysis (<10%) after 31 days at 25°C nor after a further 12 days at 50°C at pH 5 and 7.	>98	EPA Guideline 161-1	ICI5504/0824	
Photolysis characteristics	Continuous irradiation at 25°C and pH 7 gave an estimated reaction half-life of 8.7 to 13.9 days Florida summer sunlight. At least 15 photo-degradation products were observed but only one, azoxystrobin <i>Z</i> - isomer, was present at >10%.	>98	EPA Guideline 161-2	ICI5504/0823	
Dissociation characteristics	Does not dissociate	99.0	OECD 112	ICI5504/0028	

Table 1. Physico-chemical properties of pure azoxystrobin

Table 2. Chemical composition and properties of technical azoxystrobin (TC)

Manufacturing process, maximum limits for impurities \geq 1 g/kg, 5 batch analysis data	Confidential information supplied and held on file by FAO. Mass balances were 98.7-99.6%, with no unknowns ≥1 g/kg.
Declared minimum azoxystrobin content	965 g/kg
Relevant impurities ≥ 1 g/kg and maximum limits for them	None
Relevant impurities < 1 g/kg and maximum limits for them	None
Stabilizers or other additives and maximum limits for them	None
Melting temperature range of the TC	114-116°C

Hazard summary

Azoxystrobin has not been evaluated by the FAO/WHO JMPR or IPCS, but has been reviewed by the US EPA and the EU.

EU hazard classifications are: (i) R 23 toxic by inhalation (T, toxic); (ii) R 50/53 very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment (N, dangerous for the environment).

The US EPA Signal Word for technical azoxystrobin is: Caution. US EPA has concluded that azoxystrobin in not likely to cause cancer and is not a developmental or reproduction toxicant. However, azoxystrobin can persist for several months or longer and some of its degradation products have properties similar to chemicals which are known to leach through soil to ground water under certain conditions as a result of agricultural use. Thus US EPA concluded that use of azoxystrobin in areas where soils are permeable, particularly where the water table is shallow, may result in ground water contamination. US EPA noted that azoxystrobin is toxic to freshwater and estuarine/marine fish and aquatic invertebrates and issued instructions that it should be kept out of lakes, streams, ponds, tidal marshes, or estuaries.

The WHO hazard classification of azoxystrobin is "U, unlikely to present acute hazard in normal use" (WHO 2002).

Formulations

The main formulation types available are SC and WG and azoxystrobin may be coformulated with other fungicides. These formulations are registered and sold in many countries worldwide.

Methods of analysis and testing

Azoxystrobin is determined by capillary GC with FID and internal standardization with 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine. An additional identity test is based on the IR spectrum. The method was adopted by CIPAC, with provisional status, in 2007, following a successful collaborative study. The GC method gives a good resolution between azoxystrobin (*E*-isomer) and the *Z*-isomer.

Impurities were determined by GC.

Test methods for determination of physico-chemical properties of the technical active ingredient were OECD and EPA, while those for the formulations were CIPAC, as indicated in the specifications.

Physical properties

The physical properties, the methods for testing them and the limits proposed for the SC and WG formulations, comply with the requirements of the manual (FAO/WHO 2006).

Containers and packaging

No special requirements for containers and packaging have been identified.

Expression of the active ingredient

The active ingredient is expressed as azoxystrobin.

ANNEX 1

HAZARD SUMMARY PROVIDED BY THE PROPOSER

Note: the proposer provided written confirmation that the toxicological data included in the following summary were derived from azoxystrobin having impurity profiles similar to those referred to in Table 2, above.

Table A. Toxicology profile of azoxystrobin technical material, based on acute
toxicity, irritation and sensitization

Species	Test	Duration and conditions	Result	Reference
Rat (m,f)	Oral	Administered in corn oil, observed up to 15 days, OECD 401 (purity 95.2% w/w), single dose 5000 mg/kg bw	MLD >5000 mg/kg bw	ICI5504/0081
Mouse (m,f)	Oral	Administered in corn oil, observed up to 15 days, OECD 401 (purity 95.2% w/w), single dose 5000 mg/kg bw	MLD >5000 mg/kg bw	ICI5504/0084
Rat (m,f)	Dermal	Dermal application for 24 h, observed up to 15 days, OECD 402 (purity 95.2% w/w), single dose 2000 mg/kg bw	LD₅₀ >2000 mg/kg bw	ICI5504/0085
Rat (m,f)	Inhalation	4 h exposure nose-only, OECD 403 (purity 96.2% w/w), doses up to 968 μg/l (atmospheric concentration)	LC ₅₀ = 698 mg/m ³ (f) = 962 mg/m ³ (m)	ICI5504/0087
Rabbit (f)	Skin irritation	4 h dermal exposure, observed up to 7 d, OECD 404 (purity 95.2% w/w), single dose 500 mg/kg bw	Non-irritant (based on EU legislation)	ICI5504/0082
Rabbit (f)	Eye irritation	Single instillation of 100 mg, OECD 405 (purity 95.2% w/w)	Non-irritant (based on EU legislation)	ICI5504/0083
Guinea pig	Skin sensitization	Magnusson & Kligman OECD 406 (purity 95.2% w/w), doses of 30 and 67% w/v.	Non-sensitizer	ICI5504/1259
Rat	Acute neurotoxicity	Draft OECD 424 (purity 96.2% w/w), single dose 2000 mg/kg bw	No neurotoxicity	ICI5504/0161

Azoxystrobin is very poorly absorbed through the skin. Moderate inhalation toxicity was observed with particulates having a highly inhalable size distribution. Azoxystrobin is a slight irritant to rabbit skin and a slight irritant to rabbit eyes but, for both end-points, the observations were insufficient to trigger EU hazard classification.

Table B. Toxicology profile of azoxystrobin technical material, based on
repeated administration (sub-acute to chronic)

			· · · · · · · · · · · · · · · · · · ·	
Species	Test	Duration and conditions	Result	Reference
Rat (m,f)	Oral	90 d, OECD 408 (purity 95.2% w/w), doses up to 6000 ppm	NOAEL = 20 mg/kg bw/d LOEL = 20 mg/kg bw/d	ICI5504/0099
Dog (m,f)	Oral	90 d, OECD 409 (purity 96.2% w/w), doses up to 250 mg/kg bw/d	NOAEL = 10 mg/kg bw/d	ICI5504/0101
Rat (m,f)	Dermal	21 d, OECD 410 (purity 96.2% w/w), doses up to 1000 mg/kg bw	NOEL = 1000 mg/kg bw/d (limit dose)	ICI5504/0089
Rat (m,f)	•	2 years, OECD 453 (purity 96.2% w/w), doses up to 1500 ppm	No carcinogenicity NOAEL = 18 mg/kg bw/d LOEL = 18 mg/kg bw/d	ICI5504/0110

Species	Test	Duration and conditions	Result	Reference
Dog (m,f)	feeding, carcinogenicity	1 year, OECD 452 (purity 96.2% w/w) doses up to 200 mg/kg bw/d	No carcinogenicity NOEL = 3 mg/kg bw/d NOAEL = 200 mg/kg bw/d	ICI5504/0106
Mouse (m,f)	carcinogenicity	2 years, OECD 451 (purity 96.2% w/w), doses up to 2000 ppm	No carcinogenicity	ICI5504/0108
Rat (m,f)	Generation reproduction	2-generation, OECD 416 (purity 96.2% w/w), doses up to 1500 ppm (170 mg/kg bw/d)	NOAEL = 32 mg/kg bw/d (general toxicity) NOAEL = 170 mg/kg bw/d (reproductive toxicity)	ICI5504/0117
Rat (m,f)	sub-chronic neurotoxicity	Draft OECD 424 (purity 96.2% w/w), doses up to 2000 ppm	No neurotoxicity up to highest dose of ~100 mg/kg/d	ICI5504/0163
Rabbit	Developmental toxicity	OECD 414 (purity 96.2% w/w), doses up to 50 mg/kg bw/d	NOEL/NOAEL = 20 mg/kg bw (developmental) NOEL/NOAEL = 7.5 mg/kg bw (maternal toxicity)	ICI5504/0122
Rabbit	Developmental toxicity	OECD 414 (purity 96.2% w/w), doses up to 500 mg/kg bw/d	NOEL >500 mg/kg bw/d (developmental) NOAEL = 50 mg/kg bw/d (maternal) Not teratogenic	ICI5504/0122
Rat	Developmental toxicity	OECD 414 (purity 95.2% w/w), doses up to 300 mg/kg bw/d	NOAEL = 25 mg/kg (maternal and developmental) Not teratogenic	ICI5504/0112

Table B. Toxicology profile of azoxystrobin technical material, based on repeated administration (sub-acute to chronic)

Azoxystrobin at doses up to the maximum tolerated in rat and mouse provided no evidence for carcinogenicity.

In the first rabbit developmental toxicity study, azoxystrobin appeared to cause developmental toxicity at a dose level of 50 mg/kg/day in presence of maternal toxicity. However, a series of investigative studies (reported in ICI5504/0122) conclusively demonstrated that the effects seen in the first study were caused by the dose vehicle. In the second definitive rabbit developmental toxicity study, maternal toxicity occurred at \geq 150 mg/kg bw/d but there was no effect on foetal development up to the highest dose. In the rat developmental toxicity study, development effects were seen only at maternally toxic doses (100 mg/kg bw/d). A two-generation reproduction study in the rat showed no evidence of reproductive toxicity, even at doses where maternal toxicity was evident. No evidence for neurotoxicity was observed in any study.

Table C. Mutagenicity profile of azoxystrobin technical material, based on *in vitro* and *in vivo* tests

Species	Test	Duration and conditions	Result	Reference
Salmonella typhimurium TA1535, TA1537, TA98, TA100; Escherichia coli WP2P, WP2P uvrA		OECD guidelines 471 and 472 (purity 97.2% w/w), doses up to 5000 µg/plate	Negative	ICI5504/0140
L5178Y TK+/- mouse lymphoma cells		OECD 476 (purity 96.2% w/w), doses up to 80 μg/ml	Positive	ICI5504/0143
Human lymphocytes (chromosomal aberrations)	Mammalian cell cytogenetic assay, <i>in</i> <i>vitro</i>	OECD guidelines 473 (purity 95.2% w/w), doses up to 1500 µg/ml	Positive	ICI5504/0131
Mouse bone marrow (m,f)	Mouse bone marrow micronucleus assay, <i>in vivo</i>	OECD 474 (purity 97.2% w/w), single dose 5000 mg/kg bw	Negative	ICI5504/0133
Rat hepatocytes (m)	Rat liver unscheduled DNA synthesis assay, <i>in</i> <i>vivo</i>	Draft OECD 486 (purity 97.2% w/w), doses up to 2000 mg/kg bw	Negative	ICI5504/0136

Azoxystrobin was negative in most genotoxicity tests but induced TK mutations in mouse lymphoma cells *in vitro* and there was evidence of a concentration-dependent clastogenic activity in human lymphocytes *in vitro* in the presence of moderate to severe cytotoxicity.

Species	Test	Duration and conditions	Result	Reference
Mallard duck (Anas platyrhynchos)	Acute oral toxicity	5 m 5 f, single dose of 0, 250, 400, 1000 or 2000 mg/kg bw (purity 96.2% w/w)	LD ₅₀ >2000 mg/kg	ICI5504/0851
Bobwhite quail (<i>Colinus</i> <i>virginianus</i>)	Acute oral toxicity	5 m 5 f, single dose of 0, 250, 400, 1000 or 2000 mg/kg bw (purity 96.2% w/w)	LD₅₀ >2000 mg/kg	ICI5504/0852
Mallard duck	Short-term dietary toxicity	10 ducks, diet with 163, 325, 650, 1300, 2600 or 5200 ppm for 5 days (purity 96.2% w/w)	LC ₅₀ >5200 mg/kg diet	ICI5504/0853
Bobwhite quail	Short-term dietary toxicity	10 ducks, diet with 163, 325, 650, 1300, 2600 or 5200 ppm for 5 days (purity 96.2% w/w)	LC ₅₀ >5200 mg/kg diet	ICI5504/1272
Mallard duck	Sub-chronic toxicity and reproduction	6 replicates, 2 m 5 f, diet with 0, 500, 1200 or 3000 ppm, 23 weeks (purity 96.2% w/w)	NOEC = 1200 mg/kg diet	ICI5504/0856
<i>Colinus virginianus</i> northern bobwhite quail	Sub-chronic toxicity and reproduction	20 replicates, 1 m 1 f adults, diet with 0, 500, 1200 or 3000 ppm, 22 weeks (purity 96.2% w/w)	NOEC = 1200 mg/kg diet	ICI5504/0857
Onchorhynchus mykiss rainbow trout	Acute toxicity	96 h exposure to 32, 56, 100, 180, 320 or 560 μg/l, flow- through system (purity 96.2% w/w)	LC ₅₀ = 0.47 mg/l	ICI5504/0909

Table D. Ecotoxicology profile of	of azoxystrobin technical material
-----------------------------------	------------------------------------

Species	Test	Duration and conditions	Result	Reference
Fathead minnow <i>Pimephales</i> <i>promelas</i>	Extended life stage	33 d exposure to 45, 90, 140, 180, 360 or 720 μg/l (purity 96.2% w/w)	NOEC = 0.147 mg/l	ICI5504/0924
Daphnia magna (water flea)	Acute toxicity	48 h exposure up to 1000□ μg/l at 20ºC (purity 96.2% w/w)	EC ₅₀ = 0.28 mg/l	ICI5504/0928
Daphnia magna (water flea)	Chronic toxicity	21 d exposure to 0, 6.25, 12.5, 25, 50, 100, 200 or 400 μg/l, static system at 20 ^o C (purity 96.2% w/w)	NOEC = 0.044 mg/l	ICI5504/0957
Scenedesmus subspicatus (green alga)	Effect on growth	96 h exposure to 0, 3.2, 10, 32, 100, 320, 1000 or 3200 μg/l (purity 96.2% w/w), static water	$E_b C_{50} = 0.36 \text{ mg/l}$	ICI5504/0961
Apis mellifera (Bee)	Acute oral	24 h EPPO Guideline No. 170 ref. 2, (purity 51.6% w/w)	LD₅₀ >200 µg ai/bee	ICI5504/0862
<i>Apis mellifera</i> (Bee)	Acute Contact	24 h EPPO Guideline No. 170 ref. 2 (purity 51.6% w/w)	LD₅₀ >25 µg ai/bee	ICI5504/0862
Parasitic wasp, Aphidius rhopalosiphi	Dose- response on glass plate	48 h IOBC (Mead-Briggs <i>et al.</i> 2000), formulation 250 g/l SC (content 23.3% w/w)	LR₅₀ >625 ml/ha	ICI5504/2627
Predatory mite <i>Typhlodromus pyri</i>	Dose- response on glass plate	7 d C.E.B. No. 167 (Jan 1993), formulation 250 g/l SC (content 23.0% w/w)	LR₅₀ >5000 ml/ha	ICI5504/0006
Earthworm <i>Eisenia andrei</i>	Reproduction toxicity	Artificial soil, 14 d exposure to 10, 100, 180, 320, 560 or 1000 mg formulation/kg, 250 g/l SC (content 23.0% w/w)	LC ₅₀ = 881 mg/kg dry soil NOEC = 20 mg/kg	ICI5504/0903
<i>Folsomia candida</i> (Collembola)	Reproduction toxicity	28 d, ISO 11267, formulation 250 g/l SC, (content 25.1% w/v)	NOEC = 50 mg/kg	ICI5504/1319
Non-target terrestrial plant seedlings	Effect on seedling emergence	18 d, OECD 208 (purity 98.6% w/w)	NOEC = 20 mg ai/kg soil	ICI5504/1376
Soil micro- organisms	Tier 1	28 d OECD 216 & 217 with formulation 250 g ai/l SC (content 22.8% w/w)	No effects up to 2.5 kg ai/ha	ICI5504/0960
Soil macro- and micro-organisms	Litterbag study	Field conditions, 188 d, formulation 250 g/l SC (content 24.8% w/v)	No negative impact on decomposition of soil organic matter	ICI5504/2319

Table D. Ecotoxicology profile of azoxystrobin technical material

ANNEX 2. REFERENCES

0	
Syngenta documer number or other	nt Year and title of report or publication details
reference	
FAO/WHO 2006	Manual on development and use of FAO and WHO specifications for pesticides,
	March 2006 revision of the 1 st edition. FAO, Rome, March 2006; WHO, Geneva,
	March 2006 (internet publications).
ICI5504/0006	2001. Azoxystrobin: A Rate Response Laboratory Test to Evaluate the Affects
1015504/0000	of a 250g/I SC Formulation on the Predatory Mite.
ICI5504/0028	1993. ICI5504: Physico-chemical Study on Pure Active Ingredient
ICI5504/0039	2000. Thermal Stability in Air and Boiling Point of Pure Material.
ICI5504/0081	1991. E5504: Acute Oral Toxicity to the Rat. 1991. E5504: Skin Irritation to the Rabbit.
ICI5504/0082 ICI5504/0083	
ICI5504/0083	1991. E5504: Eye Irritation to the Rabbit. 1991. E5504: Acute Oral Toxicity to the Mouse.
ICI5504/0084	1991. E5504: Acute Dermal Toxicity to the Rat.
ICI5504/0087	1992. ICI5504: 4-hour Acute Inhalation Toxicity Study in the Rat.
ICI5504/0087	1992. ICI5504: 21 Day Dermal Toxicity Study in the Rat.
ICI5504/0099	1992. ICI5504: 90 Day Feeding Study in Rats
ICI5504/0101	1993. ICI5504: 90 Day Oral Dosing Study in Ruis
ICI5504/0106	1994. ICI5504: 1 Year Oral Toxicity Study in Dogs.
ICI5504/0108	1995. ICI5504: 2 year Feeding Study in Mice.
ICI5504/0110	1995. ICI5504: 2 year Feeding Study in Rats.
ICI5504/0112	1994. E5504: Teratogenicity Study in the Rat.
ICI5504/0117	1994. ICI5504: Multi Generation Study in the Rat.
ICI5504/0122	1994. ICI5504: Developmental Toxicity Study in the Rabbit.
	1995. ICI5504: Assessment of teratogenicity in the rabbit. Addendum.
	1995. ICI5504: Developmental toxicity studies in the rabbit.
ICI5504/0131	1992. E5504: An Evaluation in the In Vitro Cytogenic Assay in Human Lymphocytes.
ICI5504/0133	1992. E5504: An evaluation in the mouse micronucleus test
	1994. E5504: An Evaluation in the Mouse Micronucleus Test. First supplement to TOX 96-50034.
ICI5504/0136	1992. E5504: Assessment for the Induction of Unscheduled DNA Synthesis in Rat Hepatocytes In Vivo.
ICI5504/0140	1992. ICI5504: An Evaluation of Mutagenic Potential using S. typhimurium and E. coli.
ICI5504/0143	1993. ICI5504: An Assessment of Mutagenic Potential using L5178Y Mouse Lymphoma Cells.
ICI5504/0161	1994. ICI5504: Acute Neurotoxicity Study in Rats.
ICI5504/0163	1994. ICI5504: Sub-Chronic Neurotoxicity Study in Rats.
ICI5504/0822	1994. ICI5504: Quantum Yield and Environmental Half-life for Direct Photo- Transformation in Aqueous Solution.
ICI5504/0823	1994. ICI5504: Aqueous Photolysis at pH 7.
ICI5504/0824	1994. Aqueous hydrolysis at pH 5,7&9 at 25 & 50 degrees C of azoxystrobin.
ICI5504/0851	1992. ICIA5504: Acute Oral Toxicity (LC50) to Mallard Duck.
ICI5504/0852	1992. ICIA5504: Acute Oral Toxicity (LC50) to Bobwhite Quail.
ICI5504/0853	1992. ICIA5504: Sub-Acute Dietary Toxicity (LC50) to Mallard Duck.
ICI5504/0856	1994. ICIA5504: Effects on Reproduction in Mallard Duck after Dietary Administration.
ICI5504/0857	1997 ICIA5504: A Reproduction Study with the Northern Bobwhite.

Syngenta documen number or other reference	t Year and title of report or publication details
ICI5504/0862	1994. ICIA5504: Acute Contact and Oral Toxicity to Honey Bees of a 500g/kg WG Formulation.
ICI5504/0903	2000. Azoxystrobin: Reproduction toxicity of azoxystrobin 250 g/L SC to the earthworm Eisenia andrei in an artificial soil test.
ICI5504/0909	1993. R234886: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss). 1993. ICIA5504: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss).
ICI5504/0924	1994. Early Life Stage Toxicity of ICI5504 to Fathead Minnow under Flow- through Conditions.
ICI5504/0928	1994. ICIA5504: Acute Toxicity of the Technical Material to First Instar Daphnia Magna.
ICI5504/0957	1994. ICIA5504: Chronic Toxicity to Daphnia Magna.
ICI5504/0960	1994. ICIA5504: Study on Microbiological Activities in Soil.
ICI5504/0961	1993. ICIA5504: Toxicity to the green alga Selenastrum capricornutum.
ICI5504/1259	1992. E5504: Skin Sensitisation to the Guinea Pig.
ICI5504/1272	1992. ICIA5504: Sub-Acute Dietary Toxicity (LC50) to Bobwhite Quail.
ICI5504/1319	2001. Azoxystrobin: Toxicity of a 250g/I SC Formulation (YF10537) on the Reproduction of the Collembola Folsomia candida.
ICI5504/1376	1994. A Toxicity Test to Determine the Affects of Azoxystrobin on Seedling Emergence and Growth of Terrestrial Plants.
ICI5504/2319	2004. A12705A: Litterbag Test on Decomposition of Organic Material in the Field by Soil Macro and Micro-organisms.
ICI5504/2627	1994. Azoxystrobin: A Laboratory Bio-assay of the Affects of Fresh Residues of a 250g/l SC Formulation on the parasitic wasp.
US EPA, 1997	1997. Azoxystrobin, Pesticide Tolerances. <i>Federal Register</i> , July 9, 62 (131), 36684-36691.
WHO 2002	The WHO recommended classification of pesticides by hazard and guidelines to classification 2000-2002. WHO, Geneva, 2002.